
The Enigma Machine

India Poetzscher

February 7, 2026

1 Introduction
The Enigma was a typewriter-esque cryptography device invented by German scientist Arthur

Scherbius shortly after World War I. For many decades, the Enigma was considered the state-
of-the-art method of encryption. As a result, Nazi Germany relieved heavily on the Enigma for
internal communication throughout World War II [1].

Mathematically, it is useful to model the Enigma using symmetric groups, as we will explore. We
will first define symmetric groups, then understand encryption as a proper involution, and finally,
explain why this turned out to be the Enigma’s fatal flaw, ultimately leading to its decryption by
British codebreakers. In 1940, the Enigma was successfully decoded by Alan Turing and his team
at Bletchley Park, and historians estimate that this work shorted the war by anywhere from two
to four years [1][2].

2 The Enigma Machine
The Enigma machine consists of a keyboard, a plugboard, three rotors, a reflector, and a

lampboard (see figure 1). To encrypt a letter, the operator types the plaintext letter on the
keyboard, sending a signal that first travels through the plugboard, then to the back of the machine
through rotors one, two, and three, before hitting the reflector. The signal then bounces off the
reflector and travels in reverse through rotors three, two, and one, then through the plugboard
again, and finally, the ciphertext letter gets lit up on the lampboard. This process is repeated for
each letter of the plaintext message and the complete ciphertext is then sent via radio transmission.

The receiving party has an identical machine, set up in the exact same way (to be discussed).
To decrypt, they simply type each letter of the received ciphertext onto the keyboard and watch
as the plaintext appears on the lampboard.

Figure 1: The components of the Enigma machine (with rotor cover removed).

1

3 Symmetric Groups
To analyze the Enigma, we must understand the notion of a symmetric group. First, recall that

a group G is a set together with a binary operation, often denoted ⋆, such that G is closed under
⋆, and the associative, identity, and inverse laws hold [3]. As the name suggests, a symmetric
group is a type of group. To understand what exactly it is, we must first introduce permutations.

Definition 3.1. A permutation is a bijection from some set X to itself.

Example 3.2. Let X = {1, 2, 3}. Then f1 : X → X where all elements map to 1 is not a
permutation, while f2 : X → X defined by f(1) = 2, f(2) = 3, and f(3) = 1 is a permutation.

Definition 3.3. Let X be a set. The set of all permutations of X together with the binary opera-
tion function composition is called a symmetric group, denoted SX . Recall that the composition
of two functions f : A → B and g : B → C, written g ◦ f , is defined by (g ◦ f)(x) = g(f(x)).

Theorem 3.4. SX is a group.

Proof. We will show that SX satisfies all four group axioms. For closure, suppose P1, P2 ∈ SX .
We know that the composition of two permutations is also a permutation, so (P1 ◦ P2) ∈ SX .
To see associativity, suppose P1, P2, P3 ∈ SX and x ∈ X. We will show (P1◦P2)◦P3 = P1◦(P2◦P3)
by evaluating each expression at x via repeatedly applying the definition of function composition.
On the left, we have

((P1 ◦ P2) ◦ P3)(x) = (P1 ◦ P2)(P3(x)) = (P1(P2(P3(x))).

On the right, we have

(P1 ◦ (P2 ◦ P3))(x) = P1((P2 ◦ P3)(x)) = (P1(P2(P3(x))).

Since the left and right expressions are equivalent, associativity holds.
Next, let e be our identity element defined by e(x) = x for all x ∈ X. Then e is a permutation of
X, so e ∈ SX . For all P ∈ SX

(e ◦ P)(x) = e(P (x)) = P (x) = P1(e(x)) = (P ◦ e)(x)

so the identity law holds.
Lastly, we show the existence of a unique inverse for each P ∈ SX . Since P ∈ SX , P is a bijection,
meaning it has a unique inverse P−1. The inverse of a bijection is a bijection, so P−1 ∈ SX .

Knowing that SX is a group will be critical to our analysis of the Enigma. Our focus will be on
the symmetric group S26, the set of all permutations of the set {1, 2, 3, ..., 26}, where we view each
number from 1 to 26 in terms of its corresponding letter in the alphabet (i.e. 1 = A, 2 = B...). For
the remainder of this paper, let X denote this set {1, 2, 3, ..., 26}.

4 Enigma as a Symmetric Group
Now we take a closer look into the Enigma’s internal workings. Recall that the sequence of

events for a letter leaving the keyboard is plugboard → 3 rotors → reflector → 3 rotors (in reverse
order) → plugboard → lampboard.

4.1 Rotors
First, we will zoom in on the three rotors. Let R1 be the right-most rotor, R2 the middle

rotor, and R3 the left rotor. The electrical current leaves the plugboard and travels, from right to
left, through each rotor in the order R1, R2, R3. Each rotor has 26 contact points on the right
(the incoming side) and 26 contacts on the left (the outgoing side). Inside the rotor is a mess of
26 wires that connects input and output contacts and acts as an "electrical implementation of a
substitution cipher" [4]: the incoming letter gets mapped to some letter via the wiring connection,
which becomes the input for the subsequent rotor. The physical set up of the wires ensures that
each rotor Ri : X → X is a permutation, an element of S26 [4].

2

Figure 2: Two rotors and their contact points.

Example 4.1. Suppose R1 maps the letter A to K, R2 maps K to Q, and R3 maps Q to J . Then
an A enters the sequence of rotors and comes out as a J the other end.

The crucial characteristic of the rotors is that they are dynamic—meaning they rotate. Specif-
ically, each rotor can be in one of 26 positions, with its current position indicated by the letter
sitting at the top of the rotor that peeks through the display window.

After a key is pressed on the keyboard, R1 rotates one position, which changes its mapping.
This means the same letter would now follow a different path through R1. Specifically, that letter
follows the subsequent letter in the alphabet’s path. For example, an A now follows B’s path, B
follows C’s path, and so on [5]. If previously R1 mapped A to K and B to X, it would now map
A to X. Essentially, R1 becomes a different permutation, say R′

1. Each key press continues to
shift R1 forward one position and, by default, after R1 has completed one full revolution returning
to its initial position (after 26 key presses), it triggers the middle rotor R2 to shift one position.
Similarly, once R2 has completed one revolution (after 262 key presses), the left rotor R3 shifts
one position [6]. After R3 has completed one revolution (after 263 key presses), we are back to
the initial state of the machine with all A’s displayed on top. Together, this means that the rotors
encrypt each plaintext letter using a different permutation.

4.2 Reflector
After going through the three rotors, the signal hits the reflector, which is a crucial feature for

our purposes. Recall that the same machine used for encryption is also used for decryption. The
purpose of the reflector’s design is to ensure this criteria is met and it achieves this by “pairing off”
letters. The reflector F : X → X is then another permutation, as it maps letters to their “partner”
and every letter has exactly one partner, which must be distinct from itself [7]. This idea will be
explored in more depth later on.

Example 4.2. Suppose our reflector pairs B with F . When a B exits the third rotor and hits
the reflector, it will then follow F ’s path as it makes its way (in reverse) through the three rotors.
Similarly, when an F hits the reflector, it would now follow B’s path.

4.3 Plugboard
The plugboard is an additional layer of security that swaps the path of two letters right after

being pressed on the keyboard and right before being displayed on the lampboard. The Germans
had exactly 10 cables that each connected two letters together, leaving six letters untouched [8].
Therefore, the plugboard P : X → X is yet another permutation mapping letters to their "partner,"
but differing from the reflector F in that there are six letters that don’t get a "partner" and instead,
remain unchanged.

Example 4.3. Suppose A and W are connected on the plugboard. Then, if you type an A on
the keyboard, you’ll actually follow W ’s path moving forward. Similarly, if you type a W , you’ll
actually follow A’s path. Further suppose that T and Q are connected on the plugboard. If
that W -turned-A turns into a T after traveling through the rotors, the reflector, and reversing

3

through the rotors, then the plugboard would convert that T to a Q and a Q would light up on
the lampboard.

The 10 plugboard cable connections could be changed at any time and were only known by the
internal network. There are

26!

6!10!210
= 150, 738, 274, 937, 250

possible ways to wire the plugboard [9]. The 26! comes from the ways of choosing from the set of
26 letters, but we must divide out 6! for the letters that are not involved. We also need to divide
out 10! since even though 20 letters are involved, there are only 10 wires. Lastly, the ordering
of a pairing does not matter (T and Q is the same as Q and T), so we must divide by 210. This
massive number tremendously complicates the system.

4.4 Modeling Encryption
We are now ready to model the entire encryption process using our group operation.

Theorem 4.4. Let Ri (for i = 1, 2, 3), F, and P , represent the rotor, reflector, and plugboard
permutations, respectively. Then, encryption E : X → X (of a single letter) can be modeled as

(∗) E = P−1 ◦R−1
1 ◦R−1

2 ◦R−1
3 ◦ F ◦R3 ◦R2 ◦R1 ◦ P

Furthermore, we can simplify this as

(∗∗) E = S−1 ◦ F ◦ S

where S = R3 ◦R2 ◦R1 ◦ P represents the forward path [5].

Proof. The first five permutations in (∗) (recall function composition is applied right to left) directly
correspond to the first half of the path that a letter takes through the Enigma. Now we turn to
the second half (post-reflector F). The existence of the inverse permutations follows from the fact
that permutations are bijective, and all bijections have a (unique) inverse. Left to prove is that
these inverses actually represent the path that a letter takes on the back half of its journey through
the Enigma. Consider a rotor in a fixed position. Initially, a letter enters the rotor from its right
side and travels through the rotor’s internal wiring exiting on the left (the forward direction, given
by Ri). On its way back, however, it needs to enter the rotor from the left and exit on the right
(backwards direction, which we claim is given by R−1

i). When entering through the left contact
Ci,L for some i ∈ {1, 2,26}, it needs to exit the rotor through the contact point that Ci,L is
connected to via wiring Ci,R. This relationship is exactly given by the inverse permutation. If
Ri(a) = b, then by definition of an inverse, R−1

i (b) = a. For instance, say an A traveled through
R1 becoming a K. Even though by the time that K returns to R1 (after going through the rest
of the rotors and reflecting back) it is now a different letter, say C, to determine how C will come
out of R1, we apply R−1

1 to 3 (C’s position in the alphabet). The same applies to the plugboard
permutation and its inverse. Thus, encryption of a single letter can be modeled as (∗). Finally, to
simplify (∗) as (∗∗), recall that the inverse of a composition of bijections is each of their individual
inverses composed in reverse order.

Corollary 4.5. Encryption E : X → X (of a single letter) is an element of S26 (a permutation).

Proof. Since each step in the encryption process (plugboard, rotor, reflector) is an element of S26
and because symmetric groups are closed under function composition, encryption is also an element
of S26.

The above description of E only models encryption for a single letter, or equivalently, one fixed
set of rotor positions. Recall that the right rotor R1 (and occasionally R2 and R3) steps forward
after each key press, meaning R1 changes to a new permutation R′

1. As we’ve touched on, this
means the Enigma uses a different permutation when encrypting each letter, so encryption should
be thought of as a sequence of elements in S26, based on the initial settings of the machine. In
other words, rather than a single permutation E being able to capture the entire encryption of a
plaintext message, we need to let Ej denote the encryption of the jth letter after the initial state
of the machine. Modeling Ej looks like

Ej = P (j)−1 ◦R(j)−1
1 ◦R(j)−1

2 ◦R(j)−1
3 ◦ F ◦R(j)

3 ◦R(j)
2 ◦R(j)

1 ◦ P (j)

4

where R
(j)
i is the ith rotor permutation at time j and P (j) is the plugboard permutation at time

j [5]. Then, encryption of a series of plaintext letters is the sequence: E1, E2, ...En where n is the
number of letters of the plaintext. Thus, decryption now entails recovering an entire sequence of
permutations rather than a single fixed permutation of the alphabet.

5 Complexity of Enigma
Let us now look at the complexity of the Enigma to analyze its security as a cryptography

device. We know that the security of a cryptosystem relies substantially on how infeasible brute
force is. Now that we understand the basic structure of Enigma, we’ll explore all the ways it can
be set up to help us understand the overall complexity of the machine.

So far, we know that the different rotor positions provide 263 = 17576 states of our machine and
the plugboard another 150 trillion or so. It turns out that the Germans actually had five different
rotors to pick from. Of the five, they’d choose three to place into the machine and an order to
place them in. Since there are five rotors to choose from for the first slot, then four for the second
slot, and three for the third slot, that yields 5× 4× 3 = 60 more options. In addition, there is an
adjustable ring encasing each rotor that can be in one of 26 positions, which changes the way one
rotor triggers the next rotor to rotate, meaning only the first two rotor rings are relevant. These
rings add 262 = 676 more possibilities [1]. All together, this totals

17576× 150, 738, 274, 937, 250× 60× 676 ≈ 1.07458687× 1023

possible settings of our machine, an incomprehensibly large number.
As mentioned, the three selected rotors can only be in one of 17, 576 possible positions—not

a huge number, especially compared to the plugboard. Yet the addition of the dynamic rotors
was critical and drastically increased the difficulty of decryption, not in terms of sheer number of
permutations introduced but rather the means of deciphering. Without it, the Enigma would be,
in essence, no different from a substitution cipher (like a Caesar cipher), which is vulnerable to
frequency analysis. Now, decryption entails recovering an entire sequence of permutations, where
the same letter will not necessarily encrypt the same way until after 17,576 key-presses—and no
plaintext message contains that many letters!

Because of the massive and infeasible amount of work brute force would require, the Germans
believed their machine was unbreakable. What would breaking Enigma even entail? Well, the
Allies had their own Enigma machine—in fact Enigma machines were available to the public—but
they needed their machine to be set up identically to the Germans’ machines in order to decrypt
their messages. Much of the German’s set up remained constant throughout the war, but certain
pieces changed on the daily. What remained fixed was the internal wirings of each rotor (the Ri

permutations for all five rotors), and with the help of Polish Cryptanalyst Rejewski’s work, the
Allies acquired this information [1]. What was left was the daily key: a sheet of paper sent to
each German officer, which outlined the exact settings to put their machine on for that day before
beginning decryption. This included information about which three of the five rotors to place
into the machine and in which order, the starting positions of the three rotors, and the plugboard
connections [10].

Note that with this information, anyone could set their machine up accordingly at the start of
each message (by putting the chosen rotors in their described positions and wiring the plugboard)
and decode all German messages for the day. So, the task of the cryptanalyst was to figure
out the daily key. Since the daily key changed each day, ideally, you’d need a way to quickly
and consistently figure out the daily key each morning. As we’ve calculated above, however, the
combination of all of the Enigma’s set-up options makes this an infeasible “guessing game.”

6 Vulnerabilities and Cracking Enigma
Though brute force initially seemed infeasible, after modeling the Enigma as a symmetric group,

code breakers identified a mathematical property which exposed a vulnerability—a design flaw of
the machine that drastically reduced the search space needed for brute force. We now explore what
that property was.

Definition 6.1. An involution is a function f : A → A which is its own inverse. That is, for all
x ∈ A, f(f(x)) = x or equivalently, f2 = e where e is the identity map.

5

Definition 6.2. A fixed point of a function f is an element x in the domain that gets mapped
to itself: f(x) = x.

Definition 6.3. A proper involution is an involution with no fixed points.

Theorem 6.4. The reflector permutation F : X → X is a proper involution [11].

Proof. Recall that F is a bijection that "pairs off" elements, such that each element has exactly
one partner (which is distinct from itself). In our set X, we have 13 pairings and F maps each
element to its partner, thus F has no fixed points. To see that F is an involution, we know that
F (x) = y for some y ∈ X such that F (y) = x. Then F (F (x)) = F (y) = x.

Theorem 6.5. For a fixed rotor configuration (no rotor stepping), encryption E : X → X, given
by

E = S−1 ◦ F ◦ S

is a proper involution.

Proof. Fix a rotor configuration. Then

E2 = (S−1FSS−1FS)

= S−1F (SS−1)FS by associativity of function composition

= (S−1FeFS) by definition of inverse

= (S−1FFS) by definition of identity e

= (S−1F 2S)

= (S−1eS) by Theorem 6.4

= (S−1S) by definition of identity e

= e.

Since E2 is the identity permutation, then E(E(x)) = x for all x ∈ X.
To show that E has no fixed points, suppose for a contradiction that E(x) = x for some x ∈ X.
Then

E(x) = S−1(F (S(x)) = x

where the first equality holds by the definition of function composition and the second from our
assumption. Applying S to the right equality (and switching the order) we get

S(x) = S(S−1(F (S(x)))

= e(F (S(x))) by definition of inverse
= F (S(x)) by definition of identity e

meaning F maps S(x) to itself, contradicting that F has no fixed points. Thus, E has no fixed
points, so encryption at a fixed rotor position is a proper involution.

Corollary 6.6. No letter is ever enciphered as itself [11].

Proof. Since encryption of a single letter is a proper involution, it has no fixed points, thus no
letter is ever enciphered as itself.

Why was this a vulnerability? Recall that the ultimate goal of the cryptanalyst is to guess the
daily key, which consisted of the rotor ordering, the rotor starting positions, and the plugboard
connections. The fact that no letter was ever encrypted as itself allowed for “crib-based” attacks:
comparing portions of ciphertext with a known part of the plaintext, called a “crib.” Given a
ciphertext, the cryptanalyst would start by guessing a word that they think will appear in that
message (the crib).

Example 6.7. For instance, each day the Germans would send out a weather report at 6am
which always followed the same format. We are pretty confident that the word “weather report”,
“wetterbericht” in German, will appear somewhere in that message, making this our "crib" [12].
Since we know that no letter encrypts as itself, we can slide our crib back and forth under the

6

ciphertext until that property holds true for all letters. For instance, the following is not a legal
correspondence since we have an E encrypting as an E

GEQXLESQTPIXZ. . .

WETTERBERICHT

but if we shifted our crib further we might get the perfectly legal match-up

. . .MXLPISV BITTZH. . .

WETTERBERICHT

which means “MXLPISVBITTZH” might be our ciphertext encoding of “WETTERBERICHT”.

Since most messages were not that long, you could feasibly figure out the ciphertext encoding
of your crib, or at worst, a few candidates. Once you have a crib and its ciphertext, we can work
towards figuring out the plugboard combinations—the most important piece of the day key—using
the “Bombe Machine.”

The Bombe Machine was a huge machine built by Alan Turing and Gordon Welchman, aimed at
figuring out the plugboard. From here, the rest of the daily key could be relatively-easily computed.
At a high level, the Bombe Machine used the crib to speed up the process of guessing plugboard
connections. The algorithm behind the Bombe Machine begins by making a guess about a single
plugboard pairing and checks for contradictions based on that assumption [8].

Putting aside the Bombe Machine momentarily and taking our above example, suppose we guess
that M and A are connected on the plugboard. Our crib tells us that M (from "MXLPISVBITTZH")
maps to W (from "WETTERBERICHT") for some rotor position. So picking any initial rotor
position, we begin to build up a chain of implications. We know

1. M is encrypted as a W (from our crib)

2. The plugboard turns M into A before entering the machine (our guess)

3. The rotors and reflector convert A to a specific, known letter, say K (known since the Allies
had the rotor wirings)

4. K goes through the plugboard and becomes a W (from our crib)

Thus, we have just deduced another plugboard pairing, K and W . We continue this process
of deducing plugboard connections, and if at any point we reach a contradiction to our initial
assumption (i.e. M is connected to a letter other than A on the plugboard), we know our initial
guess was wrong, and we move on to the next guess—the next letter that M could be connected
to. If we go through all 26 possible connections (which includes the possibility that M has no
connection on the plugboard), then we step our right rotor forward one position [12]. If we
don’t reach a contradiction, we want to “halt” and add this plugboard connection to a list of valid
possibilities to be checked later. Eventually, we will step through all 17,576 positions. Furthermore,
we repeat this process for each of the 60 possible rotor orderings [8].

This process takes extremely long and seems like an infeasible amount of work, but Turing
had two insights that drastically sped this process up. First, he realized that once you’ve found a
contradiction, all other deductions made along the way must also be false, meaning these can all
be thrown out, reducing the search space—they’re all “fruit of a poison tree” [12]. Secondly, he
realized you could create and evaluate this chain of implications instantaneously using electrical
currents. Thus, the Bombe machine was born to do just that, and was able to go through all
rotor positions and orderings in just 20 minutes, leaving a large, but feasible, list of possibilities
to be checked by hand by human cryptanalyst [8]. From here, the cryptanalysts can figure out all
the correct plugboard connections, compute the rest of the daily key, and begin decoding German
messages.

7 Conclusion
The Enigma was regarded as one of the most advanced cryptosystems of its time, thought

unbreakable by several of the world’s most renowned code breakers. It was not until code breakers
turned to group theory that its design flaws were identified and exploited. Group theory both
beautifully models the Enigma and ultimately, was the key to cracking it.

7

References
[1] Graham Ellsbury. The enigma machine: Its construction, operation and complexity. ells-

bury.com, 2003.

[2] Jack Copeland. Alan turing: The codebreaker who saved ’millions of lives’. BBC, 2012.

[3] Jill Pipher Jeffrey Hoffstein and Joseph H. Silverman. An Introduction to Mathematical Cryp-
tography. Springer, 2014.

[4] David Cash. Permutations and enigma. https://people.cs.uchicago.edu/ davidcash/284-
autumn-19/02-permutations-and-enigma.pdf, 2019.

[5] Bill Casselman. Marian rejewski and the first break into enigma. American Mathematical
Society, 2009.

[6] Eric Roberts and Jerry Cain. The enigma machine.
https://web.stanford.edu/class/cs106j/handouts/36-TheEnigmaMachine.pdf, 2017.

[7] 101Computing. Code breaking during wwii. https://www.101computing.net/enigma/enigma-
instructions.html, 2025.

[8] Kathleen Wang Angela Zou and Robby Huang. Bombe machine.
https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/s2022/
az292kw456lh479/az292kw456lh479/index.html, 2025.

[9] Numberphile. 158,962,555,217,826,360,000. https://www.youtube.com/watch?v=G2Q9FoD −
oQ, 2013.

[10] The National Museum of Computing. The turing-welchman bombe.
https://www.tnmoc.org/bombe, 2005.

[11] Jeff Suzuki. The theorem that won the war: Part 2.4 – the message key. Mathematical
Association of America, 2023.

[12] Numberphile. Flaw in the enigma code. https://www.youtube.com/watch?v=V4V2bpZlqx8,
2013.

8

	Introduction
	The Enigma Machine
	Symmetric Groups
	Enigma as a Symmetric Group
	Rotors
	Reflector
	Plugboard
	Modeling Encryption

	Complexity of Enigma
	Vulnerabilities and Cracking Enigma
	Conclusion

